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Motivation

I More and more complete genomes
I Pan-genome: analysis within same species
I Mammalian-sized genomes are coming soon

Key question: what is a handy data structure to
represent genomes?

The simplest way: string(s) of characters.
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The Linear Representation

Two genomes:

Issues:
I Homology between genomes?
I Duplications?
I Rearrangements?
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Solution: a Graph Representation

What we want to see:
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Why de Bruijn graph?

A simple object.

Demonstrated utility in:
I Assembly
I Read mapping
I Synteny identification
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The de Bruijn Graph

k = 2

TGACGTC TGACTTC

AC GTCGGATG TC

AC TTGATG TCCT
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Compaction

After compaction:

TGAC ACGTC

ACTTC
TG AC TC
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The Challenge

Construct the compacted graph from many large
genomes bypassing the ordinary graph traverse.

Earlier work: based on su�x arrays/trees Sibelia &
SplitMEM handled > 60 E.Coli genomes.

A recent advance: 7 Humans in 15 hours using 100
GB of RAM using a BWT-based algorithm by Baier
et al., 2015, Beller et al., 2014.
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Junctions

A vertex v is a junction if:
I v has � 2 distinct outgoing or incoming edges:

I v is the first or the last k-mer of an input string

Facts:
I Junctions = vertices of the compacted graph
I Compaction = finding positions of junctions
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Observations

TGAC ACGTC

ACTTC
TG AC TC

TG GA AC CG GT TC

TG ! AC ! TC
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The Observation

The observation only works when we have complete
genomes.

Once we know junctions, construction of the edges
is simple.

We can simply traverse input strings and record
junctions in the order they appear.

How to identify junctions?
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The Naive Algorithm

A naive way:
I Store all (k + 1)-mers (edges) in a hash table
I Consider each vertex one by one
I Query all possible edges from the table
I If found > 1 edge, mark vertex as a junction

Problem: the hash table can be too large.
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Simple algorithm in more detail
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An Example

Hash table = { GA ! AC }

AA

AG

AC

AT

GA
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What is the Bloom filter

A probabilistic data structure representing a set

Properties:
I Occupies fixed space
I May generate false positives on queries
I False positive rate is low

Example: Bloom Filter = { GA ! AC }

Is GA ! AC in the set? Yes.

Is GA ! AT in the set? Maybe no.
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An Example

Bloom Filter = { GA ! AC, GA ! AT }

AA

AG

AC

AT

GA

The purple edge is a false positive.
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The Two Pass Algorithm

How to eliminate false positives?

Two-pass algorithm:

1. Use the Bloom filter to identify junction
candidates

2. Use the hash table, but store only edges that
touch candidates
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An Example: the First Step

Here edges stored in the Bloom filter, purple ones
are false positives:

AC GT

CC

TT

CG

AT

GATG

TC

CT

Junction candidates: GA & AC
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An Example: the Second Step

Edges stored in the hash table. We kept only edges
touching junction candidates:

Junction: AC
19 / 28



The TwoPass Algorithm



The TwoPaCo algorithm



Results

Datasets:
I 7 humans: 5 versions of the reference +
2 haplotypes of NA12878 from 1000 Genomes

I 93 simulated humans (FIGG)
I 8 primates available in UCSC genome browser

20 / 28



Results

Running time (minutes) & memory usage (GBs).

# genomes BWT-based TwoPaCo
1 thread 1 thread 15 threads

Humans
7, k = 25 867 (100.30) 436 (4.40) 63 (4.84)
7, k = 100 807 (46.02) 317 (8.42) 57 (8.75)
43+7, k = 25 - - 705 (69.77)
43+7, k = 100 - - 927 (70.21)
93+7, k = 25 - - 1383 (77.42)
Primates
8, k = 25 - 914 (34.36) 111 (34.36)
8,k = 100 - 756 (56.06) 101 (61.68)
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Conclusion & Future Work

Can potentially facilitate:
I Visualization
I Synteny mining (Sibelia)
I Structural variations analysis
I ...
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Input Size vs. Performance

26 / 28



Parallel Scalability
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Splitting

Table 1: The minimal number of rounds it takes to compress
the graph without exceeding a given memory threshold.

Memory threshold Used memory Bloom filter size Running time Rounds
10 8.62 8.59 259 1
8 6.73 4.29 434 3
6 5.98 4.29 539 4
4 3.51 2.14 665 6
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