Building the compacted
colored de Bruijn Graph

Construction of the compacted
colored De Bruijn Graph from
reference sequence

Bioinformatics, 33(24), 2017, 4024-4032

doi: 10.1093/bioinformatics/btw609

Advance Access Publication Date: 21 September 2016
Original Paper

TwoPaCo: an efficient algorithm to build the I
compacted de Bruijn graph from many |
complete genomes |
llia Minkin', Son Pham? and Paul Medvedev'>** I
I
I
I

'Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802,
USA, ZBioTuring Inc., San Diego, CA 92121, USA, *Department of Biochemistry and Molecular Biology and
*Genomic Sciences Institute of the Huck, The Pennsylvania State University, University Park, PA 16802, USA

*To whom correspondence should be addressed.
Associate Editor: Alfonso Valencia

—
I
I
I
| Sequence analysis
I
I
I
I
I
I
I

Received on April 3, 2016; revised on September 1, 2016; accepted on September 16, 2016

el el sl e s el s

TwoPaCo: An efficient algorithm to build
the compacted de Bruijn graph from many
complete genomes

llia Minkin!, Son Pham?, Paul Medvedev!

Pennsylvania State University?
Salk Institute for Biological Studies?

Sth July 2016

TwoPaCo slides, unless otherwise noted, are from llia’s presentation 1) 28

Motivation

» More and more complete genomes
» Pan-genome: analysis within same species
» Mammalian-sized genomes are coming soon

2/28

Motivation

» More and more complete genomes
» Pan-genome: analysis within same species
» Mammalian-sized genomes are coming soon

Key question: what Is a handy data structure to
represent genomes?

2/28

Motivation

» More and more complete genomes
» Pan-genome: analysis within same species
» Mammalian-sized genomes are coming soon

Key question: what Is a handy data structure to
represent genomes?

The simplest way: string(s) of characters.

2/28

The Linear Representation

Two genomes:
—— ——l————
%

3/28

The Linear Representation

Two genomes:

Issues:
» Homology between genomes?

» Duplications?
» Rearrangements?

3/28

Solution: a Graph Representation

What we want to see:

NZ

4/28

Why de Bruijn graph?

A simple object.

Demonstrated utility in:
» Assembly
» Read mapping

» Synteny identification

5 /28

The de Bruijn Graph
k = 2

TGACGTC TGACTTC

The de Bruijn Graph
k = 2

TGACGTC TGACTTC

(DI~

The de Bruijn Graph

k = 2
TGACGTC TGACTTC

(I~ —(—(¢
(DI~

The de Bruijn Graph

(D))
ooy ¢

The de Bruijn Graph

TG

GA

Compaction

Compaction

N A\

After compaction:
TGAC
(re——(xc, ©
ACTTC

8 /28

The Challenge

Construct the compacted graph from many large
genomes bypassing the ordinary graph traverse.

9/28

The Challenge

Construct the compacted graph from many large
genomes bypassing the ordinary graph traverse.

Earlier work: based on suffix arrays/trees Sibelia &
SplitMEM handled > 60 E.Coli genomes.

9/28

The Challenge

Construct the compacted graph from many large
genomes bypassing the ordinary graph traverse.

Earlier work: based on suffix arrays/trees Sibelia &
SplitMEM handled > 60 E.Coli genomes.

A recent advance: 7 Humans in 15 hours using 100
GB of RAM using a BWT-based algorithm by Baier

et al., 2015, Beller et al., 2014.

9/28

Junctions

A vertex v Is a junction Iif:
» v has > 2 distinct outgoing or iIncoming edges:

10 /28

Junctions

A vertex v Is a junction Iif:
» v has > 2 distinct outgoing or iIncoming edges:

» v Is the first or the last k-mer of an input string

10 /28

Junctions

A vertex v Is a junction Iif:
» v has > 2 distinct outgoing or iIncoming edges:

» v Is the first or the last k-mer of an input string
Facts:

» Junctions = vertices of the compacted graph

» Compaction = finding positions of junctions

10 /28

Observations

CAC ACGTC

T

11/28

Observations

ACGTC

(ror——(ac)

TGGAACCG GT TC

Observations

ACGTC

(ror——(ac)

TGGAACCG GT TC
TG - AC - TC

The Observation

The observation only works when we have complete
genomes.

Once we know junctions, construction of the edges
Is simple.

We can simply traverse input strings and record
junctions in the order they appear.

How to identify junctions?

12 /28

The Naive Algorithm

A naive way:
» Store all (k + 1)-mers (edges) in a hash table
» Consider each vertex one by one
» Query all possible edges from the table

» If found > 1 edge, mark vertex as a junction

13 /28

Simple algorithm in more detall

Algorithm 1. Filter-Junctions

Input: strings S = {sq,...,s,}, integer k, and an empty set data structure E. A candidate set of marked junction positions C D J(S, k)
is also given. When the algorithm is run naively, all the positions would be marked.

Output: a reduced candidate set of junction positions.
1: fors € S do

2: forl <i<|s|—kdo

3 if C[s,i] = marked then > Insert the two (k + 1)-mers containing the k-mer at i into E.
4 Insert s[i..i + k] into E.

5: Insert s[i — 1..i — 1 + k| into E.

6: for s € S do

7: forl <i < |s|]—kdo

8 if C[s,i] = marked and s[i..i + k — 1] is not a sentinel then

9

: in — 0 [> Number of entering edges
10: out — 0 > Number of leaving edges
11: for ce {A,C,G, T} do > Consider possible edges and count how many of them exist
12: if v-c € E then > The symbol - depicts string concatenation
13: out «— out + 1
14: if c-v € E then
15: in—in+1
16: if in=1 and out=1 then > If the k-mer at 7 is not a junction.
17: Cls, 7] « Unmarked

18: return C

The Naive Algorithm

A naive way:
» Store all (k + 1)-mers (edges) in a hash table
» Consider each vertex one by one
» Query all possible edges from the table

» If found > 1 edge, mark vertex as a junction

Problem: the hash table can be too large.

13 /28

An Example
Hash table = { GA — AC }

14 /28

What is the Bloom filter

A probabilistic data structure representing a set

Properties:
» Occupies fixed space
» May generate false positives on queries
» False positive rate is low

15 /28

What is the Bloom filter

A probabilistic data structure representing a set

Properties:
» Occupies fixed space
» May generate false positives on queries
» False positive rate is low

Example: Bloom Filter = { GA — AC }
s GA — AC in the set? Yes.

15 /28

What is the Bloom filter

A probabilistic data structure representing a set

Properties:
» Occupies fixed space
» May generate false positives on queries
» False positive rate is low

Example: Bloom Filter = { GA — AC }

s GA — AC in the set? Yes.
s GA — AT in the set? Maybe no.

15 /28

An Example
Bloom Filter = { GA — AC, GA — AT }

The purple edge is a false positive.

16 / 28

The Two Pass Algorithm

How to eliminate false positives?

17 /28

The Two Pass Algorithm

How to eliminate false positives?

Two-pass algorithm:

1. Use the Bloom filter to identity junction
candidates

2. Use the hash table, but store only edges that
touch candidates

17 /28

An Example: the First Step

Here edges stored in the Bloom filter, purple ones

are false positives:

Ol @@

Junction candidates: GA & AC

18 /28

An Example: the Second Step

Edges stored in the hash table. We kept only edges
touching junction candidates:

PN
V4 \
4 2
' CC |
\ 1
v !
~ s’
’ S=-
7’
7’
4
7
, - iy
~
r ¢ N
TG GA AC c--om GT
\]
M M ~
\\ \~_’ \N V4
N A,
: ' TC
A Y
A S ’—~\ ’—~\ ’¢V)\
A, . 4 S -~ S -
4 \ / v~ -
" AT el TT)
\ ! \ 1
\ 4 \ ’
-~ ™ \~_¢,

Junction: AC

19 /28

The TwoPass Algorithm

Algorithm 2. Filter-Junctions-Two-Pass

Input: strings S = {s1,...,s,}, integer k, a candidate set
of junction positions C;,, integer b
Output: a candidate set of junction positions C,,,

1: F < an empty Bloom filter of size b

2: Ciemp < Filter — Junctions(S, k, F, Ci,) > The first pass
3: H < an empty hash table

4: Cour <+ Filter — Junctions(S, k, H, Ciemp) > The second pass
5: return C,y,

The TwoPaCo algorithm

Algorithm 3. TwoPaCo

Input: strings S = {sq,...,s,}, integer k, integer ¢, integer b
Output: the compacted de Bruijn graph G.(S, k)

1: Initialize counters ¢y, ..., ¢4-1 to zeroes

2: F — an empty Bloom filter of size b

3: fors € S do

4: forl1 <i<|s|—k+1do

5 h—sli.i+k—1]

6: if » not in F then

7 Insert b into F

8: Ct(h) < Cfh) + 1

9: T D gcreqct/t [> Mean number of k-mers per partition

10: po < 0,pr — g

11: for1 < i < ¢ do

12: p; < biggest integer larger than p; ; such that (3 , ..., ¢) < T, or min{{,p; ; + 1} if it does not exist.
13: Cinir < Boolean array with every position unmarked

14: for 1 < i < fdo

15: C; «— mark every position of C,;; that starts a k-mer b with hash value p; | < f(h) < p;

16: C! < Filter — Junctions — Two — Pass(S, k, b, C;)

17: Cfinal =U C:

18: return Graph implied by Cg,,;, as described in Section 3.

Results

Datasets:

» 7 humans: 5 versions of the reference +
2 haplotypes of NA12878 from 1000 Genomes

» 93 simulated humans (FIGG)
» 8 primates available in UCSC genome browser

20 /28

Results

Format: minutes (GB)

Table 2. Benchmarking comparisons

DSK+BCALM Minia Sibelia SplitMem bwt-based from Baier et al. (2015) TwoPaCo
Single strand Single strand Both strands 1 thread 15 threads
62 E.coli (k = 25) 6 (1.57) 151 (0.9) 10 (12.2) 70 (178.0) 8 (0.85) 12 (1.7) 4 (0.16) 2 (0.39)
62 E.coli (k = 100) 13 (2.50) 114 (1.9) 8(7.6) 67(178.0) 8 (0.50) 12 (1.0) 4(0.19) 2(0.39)
7 humans (k = 25) 444 (22.44) 968 (48.09) - = 867 (100.30) 1605 (209.88) 436 (4.40) 63 (4.84)
7 humans (k = 100) 1347 (221.65) 1857 (222.0) - = 807 (46.02) 1080 (92.26) 317 (8.42) 57 (8.75)
8 primates (k = 25) 2088 (85.62) = - - - - 914 (34.36) 111 (34.36)
8 primates (k = 100) - - - - - - 756 (56.06) 101 (61.68)
(43 + 7) humans (k = 25) - = - > - - 705 (69.77)
(43 + 7) humans (k = 100) - > - » - - 927 (70.21)
(93 + 7) humans (k = 25) - = - = - - 1383 (77.42)

Note: Each cell shows the running time in minutes and the memory usage in parenthesis in gigabytes. TwoPACo was run using just one round, with a Bloom fil-
ter size b=0.13 GB for E.coli, 4.3 GB for 7 humans with k=25, b= 8.6 GB with k=100, b =34 GB for primates, and b =69 GB for (43 + 7) and larger human
dataset. A dash in the SplitMem and bwt-based columns indicates that they ran out of memory, a dash in the Sibelia column indicates that it could not be run on

such large inputs, a dash in the minia column indicates that it did not finish in 48 h, a dash in the BCALM column indicates that it ran out of disk space (4 TB). A
double dash indicates that the software had a segmentation fault. An empty slot indicates that the experiment was not done.

21 /28

Conclusion & Future Work

Can potentially facilitate:
» Visualization
» Synteny mining (Sibelia)
» Structural variations analysis

23 /28

Input Size vs. Performance

Running time (minutes)

Number of k-mers

400

300

200

100

Running time

—&— Simulated humans
—— Primates
—&— Human assemblies

1 2 3 4

Number of genomes

109 Number of distinct k-mers in different datasets

)

—— Simulated humans
—— Primates
—&— Human assemblies

® @

1 2 3 4

Number of genomes

5

Memory (GBs)

Number of junctions

20

15

10

Maximum memory consumption

—— Simulated humans

- —— Primates
—&— Human assemblies
1 2 3 4 5 6 7
Number of genomes
. Number of junctions in different datasets
-10
—&— Simulated humans
—— Primates
= —&— Human assemblies
® oo o 9 ®
1 2 3 4 5 6 7

Number of genomes

26 /28

Parallel Scalability

20

10

Speedup (times)

Parallel scalability

| |

—0— First pass
—m— Second pass
—&— Edge construction

| | |

10 20 30

Number of worker threads

27 /28

Splitting

Table 1: The minimal number of rounds it takes to compress

the graph without exceeding a given memory threshold.

Memory threshold | Used memory | Bloom filter size | Running time | Rounds
10 8.62 8.59 259 1
38 6.73 4.29 434 3
6 5.98 4.29 539 4
4 3.51 2.14 665 6

28 /28

